NLAS3158

Low Voltage Dual SPDT Analog Switch Dual 2:1 Multiplexer

The NLAS3158 is an advanced CMOS analog switch fabricated with silicon gate CMOS technology. It achieves very low propagation delay and $\mathrm{RDS}_{\mathrm{ON}}$ resistances while maintaining CMOS low power dissipation. Analog and digital voltages that may vary across the full power-supply range (from V_{CC} to GND). This device is a drop in replacement for the PI5A3158.

The select pin has overvoltage protection that allows voltages above V_{CC}, up to 7.0 V to be present on the pin without damage or disruption of operation of the part, regardless of the operating voltage.

Features

- High Speed: $\mathrm{t}_{\mathrm{PD}}=1.0 \mathrm{~ns}$ (Typ) at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=1.0 \mu \mathrm{~A}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Standard CMOS Logic Levels
- High Bandwidth, Improved Linearity
- Low $\mathrm{RDS}_{\mathrm{ON}}$: 8Ω Max at 3 V
- Break Before Make Circuitry, Prevents Inadvertent Shorts
- This is a Pb -Free Device

Typical Applications

- Switches Standard NTSC/PAL Video, Audio, SPDIF and HDTV
- May be used for Clock Switching, Data MUX'ing, etc.
- Can Switch Balanced Signal Pairs, e.g. LVDS > $200 \mathrm{Mb} / \mathrm{s}$

Important Information

- Latchup Performance Exceeds 300 mA
- Pin for Pin Drop in for PI5A3158
- TDFN Package, 3x1 mm
- ESD Performance: Human Body Model; > 2000 V;

Machine Model; > 200 V

- Extended Automotive Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (See Appendix A)

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

Figure 1. Pinout (Top View)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7.0	V
DC Switch Input Voltage (Note 1)	V_{IS}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
DC Input Voltage (Note 1)	V_{IN}	-0.5 to +7.0	V
DC Input Diode Current $@ \mathrm{~V}_{\mathrm{IN}}<0 \mathrm{~V}$	I_{IK}	-50	mA
DC Output Current	$\mathrm{I}_{\mathrm{OUT}}$	128	mA
DC V_{CC} or Ground Current	$\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}$	+100	mA
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature Under Bias	T_{J}	150	${ }^{\circ} \mathrm{C}$
Junction Lead Temperature (Soldering, 10 Seconds)	T_{L}	260	${ }^{\circ} \mathrm{C}$
Power Dissipation @ $+85^{\circ} \mathrm{C}$	P_{D}	mW	

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

RECOMMENDED OPERATING CONDITIONS (Note 2)

Characteristic	Symbol	Min	Max	Unit
Supply Voltage Operating	V_{CC}	1.65	5.5	V
Select Input Voltage	V_{IN}	0	$\mathrm{~V}_{\mathrm{CC}}$	V
Switch Input Voltage	V_{IS}	0	$\mathrm{~V}_{\mathrm{CC}}$	V
Output Voltage	$\mathrm{V}_{\mathrm{OUT}}$	0	$\mathrm{~V}_{\mathrm{CC}}$	V
Operating Temperature	T_{A}	-55	+125	${ }^{\circ} \mathrm{C}$
Input Rise and Fall Time	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$			ns / V
Control Input $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}-3.6 \mathrm{~V}$				
Control Input $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V}$		0	10	
Thermal Resistance	θ_{JA}	-	350	${ }^{\circ} \mathrm{C} / \mathrm{W}$

2. Select input must be held HIGH or LOW, it must not float.

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Test Conditions	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	HIGH Level Input Voltage		$\begin{array}{\|c\|} \hline 1.65-1.95 \\ 2.3-5.5 \end{array}$				$\begin{gathered} \hline 0.75 \mathrm{~V}_{\mathrm{CC}} \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage		$\begin{array}{\|c\|} \hline 1.65-1.95 \\ 2.3-5.5 \end{array}$					$0.25 \mathrm{~V}_{\mathrm{CC}}$ $0.3 \mathrm{~V}_{\mathrm{CC}}$	V
I_{N}	Input Leakage Current	$0 \leq \mathrm{V}_{\mathbb{I N}} \leq 5.5 \mathrm{~V}$	0-5.5		$\begin{gathered} \pm 0.0 \\ 5 \end{gathered}$	± 0.1		± 1	$\mu \mathrm{A}$
IofF	OFF State Leakage Current	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$	1.65-5.5		$\begin{gathered} \pm 0.0 \\ 5 \end{gathered}$	± 0.1		± 1	$\mu \mathrm{A}$
RoN	Switch On Resistance (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{IO}=-30 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA} \end{aligned}$	4.5		$\begin{aligned} & 3.0 \\ & 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 8.0 \\ & 13 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 8.0 \\ & 13 \end{aligned}$	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA} \end{aligned}$	3.0		$\begin{aligned} & \hline 4.0 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 19 \end{aligned}$		$\begin{aligned} & \hline 8.0 \\ & 19 \end{aligned}$	Ω
		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA}} \end{aligned}$	2.3		$\begin{aligned} & \hline 5.0 \\ & 13 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 24 \end{aligned}$		$\begin{aligned} & 9.0 \\ & 24 \end{aligned}$	Ω
		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=1.65 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA} \end{aligned}$	1.65		$\begin{aligned} & \hline 6.5 \\ & 17 \end{aligned}$	$\begin{aligned} & 12 \\ & 39 \end{aligned}$		$\begin{aligned} & \hline 12 \\ & 39 \end{aligned}$	Ω
ICC	Quiescent Supply Current All Channels ON or OFF	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\text {OUT }}=0 \end{aligned}$	5.5			1.0		10	$\mu \mathrm{A}$
	Analog Signal Range		V_{Cc}	0		V_{CC}	0	V_{CC}	V
RRANGE	On Resistance Over Signal Range (Note 3) (Note 7)	$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{gathered} \hline 4.5 \\ 3.0 \\ 2.3 \\ 1.65 \end{gathered}$					$\begin{gathered} 25 \\ 50 \\ 100 \\ 300 \end{gathered}$	Ω
$\triangle \mathrm{R}_{\text {ON }}$	On Resistance Match Between Channels (Note 3) (Note 4) (Note 5)	$\begin{aligned} & I_{A}=-30 \mathrm{~mA}, V_{B n}=3.15 \\ & I_{A}=-24 \mathrm{~mA}, V_{B n}=2.1 \\ & I_{A}=-8 \mathrm{~mA}, V_{B n}=1.6 \\ & I_{A}=-4 \mathrm{~mA}, V_{B n}=1.15 \end{aligned}$	$\begin{gathered} \hline 4.5 \\ 3.0 \\ 2.3 \\ 1.65 \end{gathered}$		$\begin{gathered} \hline 0.15 \\ 0.2 \\ 0.5 \\ 0.5 \end{gathered}$				Ω
$\mathrm{R}_{\text {flat }}$	On Resistance Flatness (Note 3) (Note 4) (Note 6)	$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.3 \\ & 2.5 \\ & 1.8 \end{aligned}$		$\begin{gathered} 5.0 \\ 10 \\ 24 \\ 110 \end{gathered}$				Ω

3. Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B Ports).
4. Parameter is characterized but not tested in production.
5. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}}$ min measured at identical V_{CC}, temperature and voltage levels.
6. Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.
7. Guaranteed by Design.

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Test Conditions	$V_{c c}$ (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit	Figure Number
				Min	Typ	Max	Min	Max		
$\mathrm{t}_{\mathrm{PHL}}$ tpLH	Propagation Delay Bus to Bus (Note 9)	$\mathrm{V}_{1}=$ OPEN	$\begin{gathered} \hline 1.65-1.95 \\ 2.3-2.7 \\ 3.0-3.6 \\ 4.5-5.5 \end{gathered}$			$\begin{aligned} & 1.2 \\ & 0.8 \\ & 0.3 \end{aligned}$			ns	Figures 2, 3
$\begin{aligned} & \mathrm{t}_{\text {PZL }} \\ & \mathrm{t}_{\text {PZH }} \end{aligned}$	Output Enable Time Turn On Time (A to B_{n})	$\begin{aligned} & V_{1}=2 \times V_{C C} \text { for } t_{\text {PZL }} \\ & V_{1}=0 V \text { for } t_{\text {PZH }} \end{aligned}$	$\begin{gathered} \hline 1.65-1.95 \\ 2.3-2.7 \\ 3.0-3.6 \\ 4.5-5.5 \end{gathered}$			$\begin{aligned} & 23 \\ & 13 \\ & 6.9 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 3.5 \\ & 2.5 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 24 \\ & 14 \\ & 7.6 \\ & 5.7 \end{aligned}$	ns	Figures 2, 3
$\begin{array}{\|l\|l} \text { tpLZ } \\ \text { tpHZ } \end{array}$	Output Disable Time Turn Off Time (A Port to B Port)	$\begin{aligned} & V_{1}=2 \times V_{C C} \text { for } t_{P L Z} \\ & V_{1}=0 V \text { for } t_{\text {PHZ }} \end{aligned}$	$\begin{gathered} \hline 1.65-1.95 \\ 2.3-2.7 \\ 3.0-3.6 \\ 4.5-5.5 \end{gathered}$			$\begin{gathered} \hline 12.5 \\ 7.0 \\ 5.0 \\ 3.5 \end{gathered}$	$\begin{aligned} & \hline 3.0 \\ & 2.0 \\ & 1.5 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 13 \\ & 7.5 \\ & 5.3 \\ & 3.8 \end{aligned}$	ns	Figures 2, 3
$\mathrm{t}_{\text {BBM }}$	Break Before Make Time (Note 8)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	$\begin{gathered} \hline 1.65-1.95 \\ 2.3-2.7 \\ 3.0-3.6 \\ 4.5-5.5 \end{gathered}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$		ns	Figure 4
Q	Charge Injection (Note 8)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.3 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 3.0 \end{aligned}$				pC	Figure 5
OIRR	Off Isolation (Note 10) NO	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$	1.65-5.5		-55				dB	$\begin{gathered} \text { Figures } \\ 6,16 \end{gathered}$
OIRR	Off Isolation (Note 10) NC	$\begin{aligned} & R_{L}=50 \Omega \\ & f=10 \mathrm{MHz} \end{aligned}$	1.65-5.5		-48				dB	Figures $6,16$
Xtalk	Crosstalk	$\begin{aligned} & R_{L}=50 \Omega \\ & f=10 \mathrm{MHz} \end{aligned}$	1.65-5.5		-54				dB	Figure 7
BW	-3 dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	2.5-5.5		250				MHz	Figures $10,15$
THD	Total Harmonic Distortion (Note 8)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & 0.5 \mathrm{~V}, \mathrm{P} \\ & \mathrm{f}=600 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \hline 0.014 \\ & 0.004 \end{aligned}$				\%	Figure 11

CAPACITANCE (Note 11)

Symbol	Parameter	Test Conditions	Typ	Max	Unit	Figure Number
C_{IN}	Select Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	2.3		pF	
$\mathrm{C}_{\mathrm{IO}-\mathrm{B}}$	B Port Off Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	6.5		pF	Figure 8
$\mathrm{C}_{\mathrm{IOA}-\mathrm{ON}}$	A Port Capacitance when Switch is Enabled	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	18.5		pF	Figure 9

8. Guaranteed by Design.
9. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 35 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
10. Off Isolation $=20 \log _{10}\left[V_{A} / V_{B n}\right]$.
11. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested in production.

APPENDIX A
DC ELECTRICAL EXTENDED AUTOMOTIVE TEMPERATURE RANGE CHARACTERISTICS (Note 14)

Symbol	Parameter	Test Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	HIGH Level Input Voltage		$\begin{gathered} \hline 1.65-1.95 \\ 2.3-5.5 \end{gathered}$				$\begin{aligned} & \hline 0.75 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		V
VIL	LOW Level Input Voltage		$\begin{gathered} \hline 1.65-1.95 \\ 2.3-5.5 \end{gathered}$					$\begin{gathered} 0.25 \mathrm{~V}_{\mathrm{CC}} \\ 0.3 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$	V
IN	Input Leakage Current	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$	0-5.5		± 0.05	± 0.1		± 1	$\mu \mathrm{A}$
IOFF	OFF State Leakage Current	$0 \leq A, B \leq V_{C C}$	1.65-5.5		± 0.05	± 0.1		± 1	$\mu \mathrm{A}$
R_{ON}	Switch On Resistance (Note 12)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}}^{\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA}} \\ & \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA} \end{aligned}$	4.5		$\begin{aligned} & \hline 3.0 \\ & 5.0 \\ & 7.0 \end{aligned}$			$\begin{gathered} \hline 8.5 \\ 13.0 \\ 15.0 \end{gathered}$	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA} \end{aligned}$	3.0		$\begin{aligned} & 4.0 \\ & 10 \end{aligned}$			$\begin{aligned} & 11 \\ & 20 \end{aligned}$	
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA} \end{aligned}$	2.3		$\begin{aligned} & 5.0 \\ & 13 \end{aligned}$			$\begin{aligned} & 12 \\ & 30 \end{aligned}$	
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=1.65 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA} \end{aligned}$	1.65		$\begin{aligned} & 6.5 \\ & 17 \end{aligned}$			$\begin{aligned} & 20 \\ & 50 \end{aligned}$	
I_{CC}	Quiescent Supply Current All Channels ON or OFF	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\text {OUT }}=0 \end{aligned}$	5.5			1.0		10	$\mu \mathrm{A}$
	Analog Signal Range		V_{CC}	0		V_{CC}	0	V_{CC}	V
RRANGE	On Resistance Over Signal Range (Note 12) (Note 13)	$\begin{aligned} & I_{\mathrm{A}}=-30 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \\ & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \\ & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \\ & \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{Bn}} \\ & \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 3.0 \\ & 2.3 \\ & 1.65 \end{aligned}$					$\begin{aligned} & 25 \\ & 50 \\ & 100 \\ & 300 \end{aligned}$	Ω

12. Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B Ports).
13. Guaranteed by Design.
14. For $\Delta \mathrm{R}_{\mathrm{ON}}, \mathrm{R}_{\mathrm{FLAT}}$ see $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ section.

APPENDIX A

AC ELECTRICAL EXTENDED AUTOMOTIVE TEMPERATURE RANGE CHARACTERISTICS

Symbol	Parameter	Test Conditions	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit	Figure Number
				Min	Typ	Max	Min	Max		
tphL tplh	Propagation Delay Bus to Bus (Note 16)	$\mathrm{V}_{1}=$ OPEN	$\begin{gathered} \hline 1.65-1.95 \\ 2.3-2.7 \\ 3.0-3.6 \\ 4.5-5.5 \end{gathered}$					$\begin{aligned} & 1.2 \\ & 0.8 \\ & 0.3 \end{aligned}$	ns	Figures 2, 3
$\begin{aligned} & \mathrm{t}_{\text {PZL }} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time Turn On Time (A to B_{n})	$\begin{aligned} & V_{\mathrm{I}}=2 \times \mathrm{V}_{\mathrm{CC}} \text { for } \mathrm{t}_{\text {PZL }} \\ & \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} \text { for } t_{\text {PZZ }} \end{aligned}$	$\begin{gathered} \hline 1.65-1.95 \\ 2.3-2.7 \\ 3.0-3.6 \\ 4.5-5.5 \end{gathered}$			$\begin{aligned} & 23 \\ & 13 \\ & 6.9 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 3.5 \\ & 2.5 \\ & 1.7 \end{aligned}$	$\begin{aligned} & \hline 24 \\ & 14 \\ & 9.0 \\ & 7.0 \end{aligned}$	ns	Figures 2, 3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time Turn Off Time (A Port to B Port)	$\begin{aligned} & V_{1}=2 \times V_{C C} \text { for tpLZ } \\ & V_{I}=0 V \text { for tPHZ } \end{aligned}$	$\begin{gathered} 1.65-1.95 \\ 2.3-2.7 \\ 3.0-3.6 \\ 4.5-5.5 \end{gathered}$			$\begin{aligned} & 12.5 \\ & 7.0 \\ & 5.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \\ & 1.5 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 13 \\ & 7.5 \\ & 6.5 \\ & 5.0 \end{aligned}$	ns	Figures 2, 3
$\mathrm{t}_{\mathrm{B}-\mathrm{M}}$	Break Before Make Time (Note 15)		$\begin{gathered} 1.65-1.95 \\ 2.3-2.7 \\ 3.0-3.6 \\ 4.5-5.5 \end{gathered}$				$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$		ns	Figure 4

[^0]16. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

AC LOADING AND WAVEFORMS

NOTE: Input driven by 50Ω source terminated in 50Ω NOTE: C_{L} includes load and stray capacitance NOTE: Input PRR $=1.0 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

Figure 2. AC Test Circuit

Figure 3. AC Waveforms

Figure 4. Break Before Make Interval Timing

NLAS3158

AC LOADING AND WAVEFORMS

Figure 5. Charge Injection Test

Figure 6. Off Isolation

Figure 8. Channel Off Capacitance

Figure 7. Crosstalk

Figure 9. Channel On Capacitance

Figure 10. Bandwidth

NLAS3158

Figure 11. Total Harmonic Distortion vs. Frequency

Figure 12. R $_{\mathrm{ON}}$ vs. V_{IN} vs. Temperature @ $\mathrm{V}_{\mathrm{Cc}}=3.0 \mathrm{~V}$

Figure 14. On-Resistance vs. Input Voltage

Figure 16. Off-Isolation vs. Frequency

Figure 13. R RON vs. $\mathrm{V}_{\text {IN }}$ vs. Temperature @ $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$

Figure 15. Bandwidth vs. Frequency

Figure 17. Phase Angle vs. Frequency

DEVICE ORDERING INFORMATION

Device Order Number	Device Nomenclature						
	Circuit Indicator	Technology	Device Function	Package Suffix	Tape \& Reel Suffix	Package Type	Tape \& Reel Size \dagger
	NL	AS	3158	MN	R2	QFN (Pb-Free)	3000 Unit/Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DFN12 3.0*1.0*0.8 MM
CASE 485AG-01
ISSUE O

NOTES

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION b APPLIES TO TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS	
DIM	MIN	MAX
A	0.70	0.90
A1	0.00	0.05
A3	0.20	
REF		
b	0.18	
D	0.30	
E	1.00	
BSC		
e	0.50	
BSC		
L	0.20	0.40

ON Semiconductor and (ili are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

[^0]: 15. Guaranteed by Design.
